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Abstract 

This study explores the predictive skill of seasonal rainfall characteristics for the first rainy 

(and planting) season, May-June, in Central America. Statistical predictive models were 

built using a Model Output Statistics (MOS) technique based on canonical correlation 

analysis, in which variables forecast with the Climate Forecast System version 2 (CFSv2) 

were used as candidate predictors for the observed total precipitation, frequency of rainy 

days and mean number of extremely dry and wet events in the season. CFSv2 initializations 

from February to April were explored. The CFSv2 variables used in the study consist of 

rainfall, as in a typical MOS technique, and a combination of low-level winds and 

convective available potential energy (CAPE), a blend that has been previously shown to be 

a good predictor for convective activity. The highest predictive skill was found for the 

seasonal frequency of rainy days, followed by the mean frequency of dry events. In terms 

of candidate predictors, the zonal transport of CAPE (uCAPE) at 925 hPa offers higher skill 

across Central America than rainfall, which is attributed in part to the high model 

uncertainties associated with precipitation in the region. As expected, dynamical model 

predictors initialized in February provide lower skill than those initialized later. 

Nonetheless, the skill is comparable for March and April initializations. These results 
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suggest that the National Meteorological and Hydrological Services in Central America, 

and the Central American Regional Climate Outlook Forum, can produce earlier more 

skillful forecasts for May-June rainfall characteristics than previously stated. 

 KEYWORDS: SEASONAL CLIMATE PREDICTION, PRECIPITATION, CENTRAL 

AMERICA, STATISTICAL MODELS, MOS PREDICTIVE SCHEMES, CANONICAL 

CORRELATION ANALYSIS. 

1. Introduction 

Most of Central America has a bimodal mean annual precipitation pattern (Alfaro, 2002). 

The first peak of rainfall, which is associated with the first planting season or Primera 

(García-Solera and Ramírez, 2012), occurs during May-June, and a secondary rainfall 

maximum (usually larger in magnitude) in September-October. Both precipitation maxima 

are separated by a reduction in rainfall known as the midsummer-drought (MSD; Magaña 

et al., 1999; Karnauskas et al., 2013), known locally in Spanish as veranillo or canícula. 

This cycle implies mainly a combination of systems that involves the latitudinal migration 

of the Inter-Tropical Convergence Zone (ITCZ), the seasonal variation of solar radiation 

that influences latent heat flux, and low-level winds and their interactions with local 

orography. Some places in Central America, like the Caribbean coasts of Honduras, Costa 

Rica and Panama exhibit a different annual cycle: in these locations, precipitation tends to 

occur throughout the year, with peaks in July and December. 
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The most dominant climate driver in Central America is the North Atlantic Subtropical 

High (NASH; Taylor and Alfaro, 2005; Amador et al., 2006; Amador et al., 2016a) due to 

the strong easterly trades found on its equatorward flank. Coupled with a strong trade 

inversion, a cold ocean and reduced atmospheric humidity, the region is generally at its 

driest condition during the winter. With the onset of boreal spring, however, the subtropical 

high moves offshore and trade wind intensity decreases, with downstream convergence. 

The variation in the strength of the trades is an important determinant of climate throughout 

the year for Central America. During the onset of the rainy season there is also a weak trade 

inversion with altitude, the ocean warms and atmospheric moisture is abundant. The region 

is consequently at its wettest in the boreal late spring, during summer and early autumn 

seasons (Taylor and Alfaro, 2005). This relationship between the dominant precipitation 

annual cycle and the strength of the trade winds is presented in Fig. 1.  

Fig. 1. around here. 

Besides the NASH, other significant synoptic influences include (Alfaro et al., 2016a): (a) 

the seasonal migration of the ITCZ – mainly affecting the Pacific side of southern Central 

America (Hidalgo et al., 2015); (b) the intrusions of polar fronts, originated at mid-

latitudes, which modify the boreal dry winter and early spring climates of the northern 

Caribbean and north Central American regions (Zárate-Hernández, 2013); and (c) westward 

propagating tropical disturbances (Amador et al., 2010), which are a summer seasonal 
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feature associated with much rainfall, especially over the Caribbean region. The warm 

pools of the Americas constitute an important source of moisture for the North American 

Monsoon System (Wang and Enfield, 2001; 2003). 

In Central America, Regional Climate Outlook Fora (RCOF) focus on the prediction of 

accumulated  precipitation for the following target seasons: May-June-July (MJJ), August-

September-October (ASO) and December-January-February-March (DJFM) (Donoso and 

Ramírez, 2001; García-Solera and Ramírez, 2012; Alfaro et al., 2016b). Most of the 

seasonal outlooks presented in these fora follow a classical prediction scheme, in which, for 

example, observed SST fields are used to forecast rainfall for the subsequent target season.  

Typically, these prediction schemes use statistical models based on canonical correlation 

analysis (CCA; Barnston and Ropelewski, 1992; Mason and Baddour, 2008; Navarra and  

Simoncini, 2010) to explore the predictability of seasonal rainfall in Central America, 

including MJJ (Alfaro, 2007; Fallas-López and Alfaro, 2012a; 2012b). For the early rainfall 

season (MJJ), positive and negative tropical Atlantic and Pacific SST anomalies, 

respectively, are associated with positive rainfall anomalies over a broad area located to the 

north of the studied region; and vice-versa. Cross-validated model results (Alfaro, 2007; 

Fallas-López and Alfaro, 2012a;b) show significant statistical predictive skill at seasonal 

scale over a large proportion of Central America. Nonetheless, using MJJ to define the 

Primera season has some disadvantages (Maldonado et al., 2016a; Alfaro et al. 2016a). 
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During July, there is a strengthening of the trade winds and of the Caribbean Low-Level Jet 

(CLLJ; Amador, 2008), associated with the occurrence MSD in the Eastern Tropical Pacific 

(Herrera et al., 2015, Maldonado et al., 2016b). Hence, July should be excluded in 

predictive studies of the first peak of the rainy season. 

In this sense, Alfaro et al. (2016a) used gauge stations to build skillful canonical correlation 

analysis prediction models for the MJ (May-June) season as the first peak of the rainy 

season, using, as predictands, monthly rainfall accumulations and the Standardized 

Precipitation Index (SPI) over Central America. Two data sets were used as predictors: sea-

surface temperature anomalies (SSTA) and the Palmer Drought Severity Index (PDSI) over 

the isthmus. CCA models using February´s SSTA and April´s PDSI showed significant 

skill values for the prediction of MJ accumulations and the SPI over a large proportion of 

Central America. The models´ canonical modes showed that warmer or cooler Eastern 

equatorial SSTAs in the Pacific, along with cooler or warmer SSTAs in the Tropical North 

Atlantic (TNA) during February, tend to be associated with drier or wetter conditions in 

almost all the isthmus during the following MJ season, respectively. The authors suggested 

that particular SST modes could modulate the MJ precipitation in Central America 

influencing the position of the ITCZ and the strength of the trade winds. Additionally, they 

concluded that drier or wetter soil moisture (PDSI) in April tends to be related with drier or 

wetter precipitation conditions in almost the entire isthmus during the following MJ season, 

respectively. 
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Maldonado et al. (2016a) also used CCA to explore the relationship between MJ 

precipitation anomalies during May to June in the Pacific slope of Central America, and 

SST fluctuations in the surrounding oceans. These authors studied variations in total 

precipitation, frequency of rainy days and the monthly occurrence of days with rainfall 

above and below the 80th and 20th percentile, respectively, due to changes in the nearby 

SSTs. In addition, they used a general circulation model forced with fixed SST to explore 

the sensitivity of the model to the SST patterns found using CCA. Their results showed that 

the SST over the tropical North Atlantic controls the precipitation fluctuations at inter-

annual scales, due to its connection with the tropical upper tropospheric trough. Warmer  

temperatures result in SLP below normal in the Caribbean region, associated with an 

increase in the heights at 200 hPa. This vertical configuration reduces the wind shear 

between 850 and 200 hPa and increases the mid-level moisture convergence, creating 

enhanced conditions for deep convection, and favoring the generation of tropical cyclone 

activity. In the Pacific, a positive anomalous low-level moisture flux is observed from the 

ocean to the continental parts of the region, which may enhance the formation of mesoscale 

convective systems. The prediction schemes showed a lead-time of 1 or 2 months and can 

be used for operational climate services work. The atmospheric model output results of 

Maldonado et al. (2016a), replicate the main results found in the observed composite 

analysis, suggesting the potential use for Model Output Statistics (MOS) predictive 

schemes. 
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Our objective in this work is to explore the rainfall forecast skill of cross-validated CCA-

based statistical models for Primera (MJ; Alfaro, 2002), while identifying additional 

candidate predictors to the more traditional observed SST fields already in use by the 

National Meteorological Services in the region.  

A typical model output statistics (MOS) technique involves statistical corrections of 

dynamical model output or predictor,  using observed data or predictand. For example, 

seasonal rainfall forecasts can be corrected using the observed rainfall for the same season 

and a CCA-based statistical model (e.g., Recalde-Coronel et al., 2014). Here, we first 

analyse the predictability of Primera following this same approach. Then we explore the 

suitability of a different predictor that has been used recently in Northern South America to 

forecast deep-convection activity (Muñoz et al., 2016), involving a combination of both 

low-level winds and convective available potential energy (CAPE). 

Outlooks of the Primera season are important because wetter (drier) MJ seasons tend to be 

associated with early (late) onsets of the rainy season (Alfaro et al., 2016a; Maldonado et 

al. 2016a). The early summer rainfall tends to be spatially heterogeneous across the 

Caribbean (Alfaro 2002; Jurya and Malmgren, 2012). So having a late start of the rains, like 

in 2015 (Amador et al., 2016b), followed by a significantly drier-than-normal season in MJ 

with a deep MSD in July and August (Alfaro, 2014; Hernandez and Fernandez, 2015; 

Solano, 2015; Maldonado et al. 2016b), could significantly affect key socioeconomic 
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sectors in Central America, as most cities in the isthmus are located on the Pacific slope. 

After each Central American RCOF, Application Fora are held in the region with different 

socio-economic stakeholders, in order to “translate” the predictions to probable climate 

impacts for different sectors (Alfaro et al., 2016b; Maldonado et al., 2013; 2016a). 

Generally, these fora gather representatives of the Meteorological and Hydrological 

services, as well as members of the scientific and academic community, who work in 

conjunction with the stakeholders on the elaboration of regional and local climate impacts 

perspective for the next season. A clear outcome from the most recent meetings is the need 

to have predictions for extreme events like droughts and floods. Normally, time scales that 

are of concern to stakeholders are associated with the next outlook target season, meaning 

the next three or four months; it is of special interest to know if present conditions will 

persist or what kind of changes are expected. Those extreme events in Central America are 

influenced by inter-annual variability related to ENSO and decadal variability associated 

mainly with AMO and PDO (Maldonado et al., 2013; 2016a; 2016b); these candidate 

predictors were used by these authors to produce tailored seasonal forecasts using CCA.  

2. Data 

The statistical models used in this study involve two kinds of datasets: the variables to be 

forecast (predictands), and those variables used to forecast (predictors). Anomalies of these 

datasets were computed with respect to the 1982-2011 period. 
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2.1 Predictands 

Four predictands representing different seasonal rainfall characteristics were selected: total 

precipitation, frequency of precipitation and average number of dry and extremely wet 

events. The details of how these variables were computed are presented in the Methodology 

section, but all are based on data from a total of 162 gauge stations with daily rainfall 

observations, provided by the different Meteorological Services in Central America. The 

location of each station is shown in Fig. 2. Since each meteorological station has different 

time coverage, a common time series length was selected according to the availability of 

data in the stations of Fig. 2: from January 1982 to December 2011 (30 years). 

Fig. 2. around here 

 

 

2.2 Predictors 

In a typical MOS approach, rainfall output by a dynamical climate model is used as 

predictor for observed precipitation (e.g., Mason and Baddour, 2008; Recalde-Coronel et 

al., 2014).  

The development of convective precipitation naturally depends on the presence of 
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environmental conditions favorable for the occurrence of deep convection (see Holton and 

Hakim, 2013, and references therein), and a particular index to measure the susceptibility to 

occurrence of deep convection is CAPE. This index provides a measure of the maximum 

possible kinetic energy that a statically unstable parcel can acquire (neglecting effects of 

water vapor and condensed water on the buoyancy), assuming that the parcel ascends 

without mixing with the environment and adjusts instantaneously to the local 

environmental pressure. Since most of the precipitation recorded in Central America is 

associated with deep convection of mesoscale systems, it is reasonable to consider CAPE in 

the present study. 

Furthermore, as mentioned above, the CLLJ and trade winds are drivers controlling rainfall 

in the region, modifying circulation and moisture transport patterns, especially impacting 

low-level (925 hPa) zonal winds; hence, the latter should also be considered as a candidate 

predictor for precipitation in Central America (and the Caribbean).  

As mentioned in the Introduction, a combination of low-level winds and CAPE has been 

shown to provide skillful forecasts of lightning activity, a known proxy for deep convection 

in the Tropics (Muñoz et al., 2016). In northern South America, this compound candidate 

predictor provides higher skill than either of the component variables considered 

individually, and it also outperforms other traditional predictors like sea-surface 

temperature. This result is attributed to the fact that the combination is sensitive to changes 
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in the low-level atmospheric circulation associated with both large-scale and local drivers 

controlling precipitation, like El Niño-Southern Oscillation, the Atlantic Meridional Mode, 

the Inter-Tropical Convergence Zone migrations, the CLLJ and tropical cyclone activity 

(Muñoz et al., 2016). Following these ideas, and because of the prevailing zonal component 

in the low-level winds of the region, we selected the zonal transport of CAPE at 925 hPa, or 

uCAPE, as the other candidate predictor for our study. This choice is also physically 

meaningful. The general transport of CAPE can be written, via the corresponding 

advection-diffusion equation, as 

∇ ∙ (𝑣⃑𝐶𝐴𝑃𝐸) = ∇ ∙ (𝜅∇𝐶𝐴𝑃𝐸) − 𝜕𝐶𝐴𝑃𝐸
𝜕𝑡

+ 𝑆𝑆,     

 (1) 

where the first term on the right hand is the diffusion term (𝜅 is the diffusivity), the second 

one is the temporal evolution of CAPE, and SS represents sink and source terms.  

The Climate Forecast System version 2 (CFSv2; Saha and Tripp, 2011; Saha et al., 2014) 

was selected as the coupled ocean-atmosphere model to use, due to the availability of 

rainfall (referred to hereafter as PRECIP), 925 hPa winds and CAPE hindcasts for the 

period of interest, 1982-2011. The horizontal resolution for all candidate predictors is 1o × 

1o. Considering always MJ as the target season, the February to April initialization times 

were explored, considering a total of 24 members for the calculation of the ensemble mean 

of uCAPE and PRECIP.  
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Different spatial domains were explored to adequately include spatial patterns of the 

predictors that maximized skill. The final spatial domain selected for PRECIP is defined by 

the box with coordinates 123°W - 49°W in longitude and 6oS - 34oN in latitude, while the 

box defined by the coordinates 120.5°W - 46.5°W in longitude and 6oS - 25oN in latitude 

was chosen as the best spatial domain for uCAPE. All hindcasts are available via the 

International Research Institute for Climate and Society (IRI) Data Library: 

http://iridl.ldeo.columbia.edu/expert/SOURCES/.NOAA/.NCEP/.EMC/.CFSv2/  

2.3 Climate indices 

The Niño3.4 index (Trenberth, 1997) was obtained from the National Oceanic and 

Atmospheric Administration (NOAA, 

http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices). The AMO (Enfield et al., 2001) 

index was also downloaded from the NOAA site 

(http://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data).  

We also used horizontal wind data at 925 hPa, provided by the National Center for 

Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) 

reanalysis version 2 (Kistler et al. 2001), which has a horizontal resolution of 2.5° × 2.5°. 

The wind data are used to calculate the CLLJ magnitude index as in Amador (2008) and 

Amador et al. (2010).  
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3. Methodology 

First, the gaps in the daily rain gauge time series were filled using the methodology 

described in Alfaro and Soley (2009), which combines autoregressive models and empirical 

orthogonal function (EOF) methods. From these time series, we estimated four predictands 

for every station to describe the amount and the temporal distribution of rainfall during 

May-June (MJ), using the same approach described by Maldonado et al. (2013). The first 

predictand represents the total precipitation (TP), the second corresponds to the frequency 

of rainy days or events (FRD), and the last two to the MJ average number of precipitation 

events exceeding the May and June 80th-percentile (p80) and under the May and June 20th-

percentile (p20), representing wet extremes and the driest days, respectively.  

The MOS methodology based on CCA (Mason and Baddour, 2008; Navarra and  

Simoncini, 2010) is the same one implemented by the Latin American Observatory (e.g., 

Recalde-Coronel et al., 2014; Chourio, 2016) and can be summarized as follows. An EOF 

pre-filtering was applied to the CFSv2 rainfall and uCAPE fields (candidate predictors), 

and to TP, FRD, p20 and p80 fields (predictands) to reduce their dimensionality and to 

addresses the multiplicity errors (Mason and Baddour, 2008; Navarra and Simoncini, 

2010). The maximum possible number of CCA modes is determined by the minimum 

number of EOFs between both fields. A maximum of 8 EOFs and CCA modes in the 

filtering stage was allowed. The CCA modes maximize the correlation between linear 
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combinations of the predictor’s EOFs and linear combinations of the predictand’s EOFs. 

Multiple CCA models were produced this way, one per each possible combination of the 

actual number of EOFs used for the predictor and the predictand. The maximum number of 

CCA modes is found for the best model fit. For each model, the spatially-averaged 

Kendall�s Ä rank correlation coefficient (or goodness index; Wilks, 2011) between the 

observed and forecast rainfall was computed using a 5-year cross-validation window. The 

optimal model was identified as the one having the maximum goodness index; the other 

models were discarded. 

The MOS approach was applied to a total of 24 predictor-predictand configurations (4 

predictands × 2 predictors × 3 initialization times per predictor). For the best 24 models the 

two-alternative forced-choice score (2AFC; Mason and Weigel, 2009), also known as 

generalized relative operating characteristics (GROC), was computed; the results were 

saved as spatial maps to evaluate the places with better skill for each one of the 

experiments. The 2AFC score measures discrimination, or how well a forecast system can 

distinguish between categories; e.g., below-normal rainfall from normal rainfall. It is 

related to the Kendall�s Ä used here to select the best CCA model. The expected 2AFC 

score for unskilled forecasts is 50%. 

All the calculations were performed using the batch version of the Climate Predictability 

Tool (CPT) version 15.3.7, a software tool built and maintained by the International 
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Research Institute for Climate and Society (Mason and Tippett, 2016). CPT was chosen 

because it is actually in use for operational seasonal climate prediction in Central America; 

the batch version permitted to automate the execution of the tool for all the experiments and 

their different original variations in an organized and expedited way. The Latin American 

Observatory’s Datoteca (Muñoz et al., 2010; 2012; Chourio, 2016) was used to visualize 

the CPT output. The CCA models are publicly available on Datoteca in the following site: 

http://datoteca.ole2.org/maproom/DATOTECA-CONSTRUCCION/Paper-CA-Map-1/ . 

The Spearman ranked correlations (Wilks, 2011) between the predictors’ first CCA mode 

and the values of the climate indices mentioned in Section 2.3 for the same MJ season were 

calculated to explore potential relationships between the CCA modes and known climate 

variability modes. For those correlations were calculated the 95% bootstrap confidence 

intervals using 100000 simulations. 

4. Results and Discussion 

The spatial distribution of the MJ precipitation is presented in Fig. 3. Drier regions are 

observed in northern Belize and Guatemala, Central Guatemala, Honduras and Nicaragua, 

as well as in the Gulf of Panamá. The wettest regions are located along the Caribbean coast 

of Nicaragua and Costa Rica; Costa Rica also exhibits important rainfall totals along the 

southern central Pacific coast that extends through western Panama. 
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Fig. 3. around here 

4.1 Model skill 

The overall skill for the different models and initialization times (February to April) are 

summarized in Table 1. The CCA models are defined by the number of predictor-

predictand-CCA modes that provide the best area-averaged Kendall�s Ä for the MJ season, 

using MJ hindcasts of uCAPE (Table 1a) and PRECIP (Table 1b) as predictors. In general, 

the skill is very similar for March and April initializations, independently of the predictor 

chosen. A lead time represents a significant advantage for operational forecasts in the 

region, because climate services could be provided about two months before the target 

season. Furthermore, in March and April initializations, skill tends to be better for uCAPE 

than for PRECIP. Additional results for the models initialized in March are included in the 

Supplementary Material. 

In order to analyse the spatial variability of skill, Fig. 4 shows the geographical distribution 

of 2AFC scores using uCAPE and PRECIP MJ hindcasts as predictor fields, initialized in 

April. In general, FRD and P20 are the predictands with highest skill across the isthmus; it 

is common to find that both statistical and dynamical models are better forecasting none or 

little rainfall (P20) than wetter rainfall events, and seasonal frequency tends to be more 

predictable than seasonal amounts or intensities (e.g., Moron et al., 2007; Muñoz et al., 
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2016). 

The predictor uCAPE clearly have a propensity to provide better skill than PRECIP almost 

everywhere and for all the predictands (Fig. 4). On the other hand, using PRECIP as 

predictor favours skill along the Pacific coast of Central America, although forecasts are 

generally unskilled (2AFC <= 50%) in most of the stations for TP and especially for P80.  

Fig. 4. around here 

4.2 CCA loadings 

Fig. 5 around here 

In order to better understand the sources of the skill observed in Fig. 4, we analysed the 

leading CCA modes for each model. Fig. 5 shows the loadings of the first CCA modes for 

the best models using MJ uCAPE as predictor and TP, FRD, p20 and p80 as predictands 

(Table 1). A positive uCAPE spatial pattern covering most of Central America, the 

Caribbean and northwestern South America occurring simultaneously with two negative 

uCAPE patterns, one in the northeast and another to the south-southeast of the domain (Fig. 

5a), is maximally correlated with positive anomalies of TP over almost all Central America 

(all stations with positive loadings in Fig. 5b), and a few locations with negative TP 

anomalies which lie mostly along the Caribbean slope of Costa Rica (see stations with 

negative loadings in Fig. 5b). The uCAPE patterns are a broadly similar for FRD: in this 

case, a negative uCAPE configuration over southern Central America and a positive pattern 
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located to the northeastern of the domain are maximally correlated with negative anomalies 

for the frequency of rainy events basically everywhere in Central America (Fig. 5c,d). The 

uCAPE spatial patterns of the first CCA mode for p20 and p80 (Fig. 5e,g) are more similar 

to the ones for TP (Fig. 5a) than the ones for FRD (Fig. 5c), with an inverse relationship for 

the case of the p20 (i.e., stronger positive uCAPE anomalies associated with negative 

rainfall anomalies; Fig. 5f), and a direct relationship for p80, as expected (Fig 5h). Due to 

the linear character of the method, the opposite of what has been described here, i.e., 

exchanging positives for negatives (and vice versa) in each sentence, is also true.  

A possible interpretation for this rainfall-uCAPE relationship is that a weaker trade wind 

(positive anomalies in u) decreases the vertical wind shear over the isthmus and favours the 

development of deep convective systems (associated with positive CAPE anomalies), 

which in turn tend to produce above-normal rainy conditions over the region. We attribute 

the observed inverted signal along the Caribbean slope of Costa Rica and western Panama 

to the Föhn effect of the Central American mountain chain. 

Moreover, zonal transport of CAPE from the Pacific can enhance precipitation on the 

Pacific slope of Central America, favouring more wet extreme events (the opposite for dry 

extremes). The winds involved in the uCAPE predictor could also induce inhibition of 

convective systems on the Caribbean slope via moisture divergence, thus reducing rain 

there.  
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In the best models using PRECIP as predictor (Table 1 and Fig. 6), TP, p20 and p80 have 

the same predictor pattern, which appears in Fig. 6 as a tripolar configuration with a 

positive structure homogeneously covering most of northern South America, Central 

America and the Caribbean, and two negative ones: one over the Gulf of Mexico and the 

western Caribbean, and another from coastal Ecuador to the Galapagos Islands (Fig. 

6a,e,g). This particular pattern is associated with positive anomalies for TP and p80 for 

most of the isthmus (negative anomalies for the Caribbean side of Costa Rica and Panama), 

while negative anomalies for p20 almost everywhere in Central America (Fig. 6b,f,h). For 

FRD, the predictor’s spatial pattern shows a relatively strong zonally-elongated dipole 

covering all of Central America (in negative loadings in Fig. 6c) and a section of the 

Eastern Pacific below 4oN, roughly  from coastal Ecuador to 102o W (in positive loadings 

in Fig. 6c); as expected, almost all the stations under study show a direct correlation with 

the structure covering Central America, e.g., negative rainfall anomalies in the CFSv2 

model are associated with negative anomalies in the frequency of rainy days in the 

observations (Fig. 6,d). 

Fig. 6. around here 

Overall, the analysis of Kendall�s Ä (Table 1), 2AFC scores (Fig. 4) and correlations of the 

observed and modelled leading modes (Figs. 7 and 8) indicates that uCAPE is a better 

predictor than PRECIP, especially for those models initialized in April. We attribute this 
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fact to a better representation by dynamical models --and by the CFSv2 in particular-- of 

the wind field, compared to the rainfall field. Furthermore, although the calculation of 

CAPE in dynamical models generally involves some of the same parameterizations used to 

simulate precipitation (e.g., to include entrainment rates), both theory and dynamical model 

output suggest that CAPE has less uncertainties than rainfall, at least in the Tropics (Seeley 

and Romps, 2015). Thus, using uCAPE for the development of operational climate forecast 

involving rainfall characteristics in Central America, and probably in the Caribbean nations 

and neighbouring countries, offers advantages over more traditional predictors like SST and 

model precipitation, in particular higher local skill and lead-time than previously stated 

(e.g., Alfaro et al. 2016a; Maldonado et al., 2016a). 

4.3 Leading CCA modes and climate indices 

Finally, we explored potential associations between the leading CCA modes described in 

the previous paragraphs and some standard climate modes. Table 2 shows the Spearman 

correlation values between the MJ uCAPE leading mode inter-annual time series from Fig. 

7 (red lines) and several climate indices for the same season. For the leading PRECIP mode 

(Fig. 8, red lines), the only statistically significant correlation (0.32, p-value < 0.10) was 

found between the AMO and the leading modes of TP, p20 and p80. The predictant (green 

lines in Figs. 7 and 8) and predictor mode correlations are statistically significant. Table 2 

also shows that, individually, the best correlations with the oceanic indices were obtained 
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between the leading CCA modes and AMO as in Maldonado et al. (2016a); however, 

almost all the correlations improve when the normalized difference between the AMO and 

Niño3.4 indices is used, consistent with the results of Alfaro et al. (2016). These 

correlations suggest that positive (negative) Niño3.4 SSTAs, along with negative (positive) 

AMO index values during MJ, tend to be related to drier (wetter) conditions in almost all 

the isthmus during the target season. Even better correlations were obtained when using the 

CLLJ index, in which weaker (stronger) low-level jet conditions were associated with 

wetter (drier) conditions over Central America, decreasing (increasing) the vertical wind 

shear. This suggest than a warmer (cooler) Atlantic condition, when compared with the 

Eastern Equatorial Pacific, is associated with weaker (stronger) trade winds and CLLJ 

across Central America. These conditions favour (inhibit) deep convection over the region 

(Enfield and Alfaro, 1999;  Amador, 2008; Hidalgo et al., 2015).     

Fig 7. around here 

Fig. 8. around here 

5. Conclusions  

Skilful and tailored seasonal forecast models for several rainfall characteristic indices of the 

Primera season, May – June (MJ), in Central America, can be built using canonical 

correlation analysis. The zonal transport of CAPE (uCAPE) at 925 hPa provides better 
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seasonal forecast skill than standard predictors already in use by National Meteorological 

Services in the region, such as observed SST fields. Because of the free and continuously 

updated availability of the predictor fields, these models could be used operationally in 

Central America by the Regional Climate Outlook Forums (RCOF), especially as an input 

for the target season that includes the first peak of the rainy season. Our approach has the 

novelty of using a MOS scheme for the first time in the region, and it focuses not only on 

the prediction of accumulated precipitation, but also on the frequency of rainy days and the 

occurrences of wet and dry extremes. These alternative forecast products could be 

considered by the RCOF Application Fora, working with different socio-economic 

stakeholders in order to facilitate the translation of climate predictions to probable climate 

impacts for different sectors. 

Lead-time is an important consideration in the usability of forecasts: the results presented 

here demonstrate that forecasts made from March predictors have comparable skill levels to 

those from April (see Supplementary Material). This additional month lead implies a 

significant advantage for operational climate forecasts in the region, because the associated 

climate information could be developed earlier than it normally is without compromising 

quality. 

Seasonal predictability in the models is associated with a positive relationship between 

uCAPE values and rainfall over almost all Central America. This association may involve 
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weaker trade winds, related with positive anomalies in u, causing decreases in the vertical 

wind shear over the isthmus, which favors the generation of deep convective systems, i.e., 

positive anomalies in CAPE. The net effect is an enhancement of rainy conditions over 

Central America meaning positive anomalies in precipitation. The opposite behaviour on 

the Caribbean slope of Costa Rica and western Panama could be associated with the Föhn 

effect of the mountain chain, since most of the humidity advected by this positive anomaly 

in u from the surrounding Eastern Tropical Pacific, precipitates normally on the windward 

Pacific slope, reaching the leeward Caribbean slope drier. 

There are strong synchronous relationships between the leading mode of variability of 

uCAPE and various indices of climate variability including sea-surface temperatures and 

the Atlantic Multidecadal Oscillation (AMO). The relationship is particularly strong with 

the normalized difference between AMO and Niño3.4 (AMO - Niño3.4 in Table 2): 

positive or negative Niño3.4 SSTAs, along with negative or positive AMO SSTAs, are 

associated with drier or wetter conditions along almost all the isthmus during the target 

season. The relationship between the different climate indices and the Caribbean Low-

Level Jet (CLLJ) is even stronger; weaker or stronger jet conditions are associated with 

wetter or drier conditions over Central America, decreasing or increasing the vertical wind 

shear. Hence, a warmer or cooler Atlantic condition, when compared with the Eastern 

Equatorial Pacific, is associated with weaker or stronger trade winds and CLLJ winds 

across Central America. These conditions favour or decrease deep convection activity over 
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the region.  

In Central America and especially on the Pacific slope, deep convection during the rainy 

season is associated with the convergence of the weak trade winds from the North Atlantic 

Subtropical High with mesoscale circulations like sea- and mountain-valley breezes that 

advect warm moist air from the Pacific to inland. This situation is enhanced by the ITCZ 

northward migration during boreal spring, which locates near or over the Central American 

isthmus. Thus, skillful prediction is possible using predictors that measure the susceptibility 

to occurrence of deep convection, CAPE, in conjunction with others that measure the 

strength of the trade winds, u. Since most of the precipitation recorded in Central America 

is associated with deep convection of mesoscale systems, it is reasonable to consider the 

inclusion of uCAPE as a physically-based candidate predictor of convective precipitation in 

Central America.  

These results suggest possible ways of improving on forecast information from the Central 

American RCOF (García-Solera and Ramírez, 2012; Alfaro et al., 2016b) through: a) the 

generation of rainfall consensus maps that give more specific weight to objective tools like 

IRI’s CPT; b) the consideration of other predictor fields, like uCAPE in a MOS scheme to 

improve the skill in those regions in which SST fields have low skill or in climate seasons 

in which SSTs are in neutral conditions, like the case of the recent MJ 2017; and c) the 

development of new products related to extreme wet or dry event along with the frequency 
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of rainy days. These types of information are deemed very useful by the stakeholders to 

analyse probable impacts associated with the seasonal-scale climate hazards.  
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Figure S1. Spatial distribution of the 2AFC (or GROC) score, using uCAPE (left column) 

and PRECIP (right column) as predictor fields for the different MJ predictands: a) TP, b) 

FRD, c) P20 and d) P80. 

Target season: MJ; CFSv2’s hindcasts initialized in March. Units in %. 

 

Figure S2. Loadings for the first CCA mode, using uCAPE as predictor (a, c, e and g) of 

the different predictands: b) TP, d) FRD, f) p20 and i) p80. Target season: MJ; CFSv2’s 

hindcasts initialized in March. 

Figure S3. Loadings for the first CCA mode, using PRECIP as predictor (a, c, e and g) of 

the different predictands: b) TP, d) FRD, f) p20 and i) p80. Target season: MJ; CFSv2’s 

hindcasts initialized in March. 

Figure S4. Time scores of the leading modes for the models using uCAPE as predictor for 

a) TP, b) FRD, c) p20 and d) p80. Predictor scores appear in red, predictand scores in 

green. Pearson correlations for the CCA leading modes were 0.894, 0.893, 0.837 and 0.803, 

respectively, with an associated p-value < 0.01 in all cases. Target season: MJ; CFSv2’s 

hindcasts initialized in March. 

Figure S5. Time scores of the leading modes for the models using PRECIP as predictor for 

a) TP, b) FRD, c) p20 and d) p80. Predictor scores appear in red, predictand scores in 

green. Pearson correlations for the CCA leading modes in this case were 0.710, 0.866, 
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0.831 and 0.871, respectively, with an associated p-value < 0.01 in all cases. Target season: 

MJ; CFSv2’s hindcasts initialized in March. 

Table S1. Spearman correlation between the uCAPE predictor mode 1 annual time series 

from Fig. S4 (red lines) and several climate variability indices. In parenthesis are the 95% 

bootstrap confidence intervals, they are calculated using 100000 simulations. Target 

season: MJ; CFSv2’s hindcasts initialized in March. 

Table S2. Spearman correlation between the PRECIP predictor mode 1 annual time series 

from Fig. S5 (red lines) and several climate variability indices. In parenthesis are the 95% 

bootstrap confidence intervals, they are calculated using 100000 simulations. Target 

season: MJ; CFSv2’s hindcasts initialized in March. 
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Tables 

Table 1.  Modes of the optimal model (X, Y, CCA) and spatial average Kendall Ä values for 

the MJ season for the different CCA models, using MJ a) uCAPE and b) PRECIP field as 

predictors, initialized from February to April. 

 

a)    April                                                  March                                               February                          

Modes              Ä                 Modes               Ä              Modes               Ä 

 

TP        8,5,2                0.14                    8,6,1                0.16                    3,8,1                0.04 

FRD     8,3,3                0.22                    7,6,3                0.23                    5,2,1                0.09 

p20     8,7,4                0.19                    7,4,2                0.19                    4,3,1                0.07 

p80     7,6,3                0.11                    8,1,1                0.13                    3,3,1                0.03 

 

 

b)    April                                                  March                                               February                          

Modes              Ä                 Modes               Ä              Modes               Ä 

 

TP        1,1,1                0.12                    5,1,1                0.13                    6,8,2                0.09 

FRD     3,3,3                0.16                    7,1,1                0.21                    5,8,1                0.12 

p20     1,1,1                0.15                    7,1,1                0.18                    5,6,1                0.12 

p80     1,1,1                0.08                    7,5,1                0.10                    6,7,1                0.10 
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Table 2. Spearman correlation between the uCAPE predictor mode 1 annual time series 

from Fig. 7 (red lines) and several climate variability indices. In parenthesis are the 95% 

bootstrap confidence intervals, they are calculated using 100000 simulations. Target 

season: MJ; CFSv2’s hindcasts initialized in April. For details see main text. 

 

 AMO Niño 3.4 AMO-Niño 3.4 CLLJ 

TP 0.40 [0.135, 0.647] -0.33 [-0.550, -
0.091] 

0.46 [0.240, 0.667] -0.47 [-0.644, -
0.232] 

FRD 0.37 [0.101, 0.615] -0.27 [-0.484, -
0.024] 

0.38 [0.124, 0.620] -0.18 [-0.393, 
0.072] 

p20 -0.34 [-0.579, -
0.067] 

0.02 [-0.236, 
0.286] 

-0.22 [-0.462, 
0.046] 

0.52 [0.303, 0.672] 

p80 0.40 [0.133, 0.650] -0.30 [-0.527, -
0.062] 

0.45 [0.213, 0.660] -0.44 [-0.623, -
0.202] 

 

 

Figure legends 

Figure 1. Annual cycle of the monthly mean a) accumulated precipitation and b) zonal wind 
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values recorded at Center for Geophysical Research - CIGEFI station (9.94ºN, 84.04ºW), 

Costa Rica. The Spearman correlation of the monthly time series from January 1995 to 

October 2016 is 0.72 with an associated p-value < 0.01. 

Figure 2. Location of the rain gauge stations used (red dots). 

Figure 3. Spatial distribution of average precipitation accumulates (1982-2011) using the 

stations plotted in Figure 2. 

Figure 4. Spatial distribution of the 2AFC (or GROC) score, using uCAPE (left column) 

and precipitation (right column) as predictor fields for the different MJ predictands: TP 

(a,b), FRD (c,d), P20 (e,f) and P80 (g,h). Target season: MJ; CFSv2’s hindcasts initialized 

in April. Units in %.  

Figure 5. Loadings for the first CCA mode, using uCAPE as predictor (a, c, e and g) for the 

different predictands: b) TP, d) FRD, f) p20 and i) p80. Target season: MJ; CFSv2’s 

hindcasts initialized in April. 

Figure 6. Loadings for the first CCA mode, using PRECIP as predictor (a, c, e and g) for 

the different predictands: b) TP, d) FRD, f) p20 and i) p80. Target season: MJ; CFSv2’s 

hindcasts initialized in April. 

Figure 7. Time scores of the leading modes for the models using uCAPE as predictor for a) 

TP, b) FRD, c) p20 and d) p80. Predictor scores appear in red, predictand scores in green. 

This article is protected by copyright. All rights reserved.



Pearson correlations for the CCA leading modes were 0.841, 0.860, 0.901 and 0.827, 

respectively, with an associated p-value < 0.01 in all cases. Target season: MJ; CFSv2’s 

hindcasts initialized in April.  

Figure 8. Time scores of the leading modes for the models using PRECIP as predictor for a) 

TP, b) FRD, c) p20 and d) p80. Predictor scores appear in red, predictand scores in green. 

Pearson correlations for the CCA leading modes in this case were 0.39 (p-value < 0.05), 

0.47 (p-value < 0.01), 0.31 (p-value < 0.10) and 0.68 (p-value < 0.01), respectively. Target 

season: MJ; CFSv2’s hindcasts initialized in April. 
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In Central America, outlooks of May-June season are important because drier seasons tend to be 

associated with late onsets of the rainy season. The region is at its wettest in the boreal late 

spring-early autumn, mainly because the formation of mesoscale convective systems like the one 

shown in the image. For that reason, a Model Output Statistics (MOS) technique is implemented 

for May-June prediction, using a combination of low-level winds and convective available potential 

energy (CAPE) over the region.  
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